
A test-particle method for the calculation of the three-particle distribution function of the hard-

sphere fluid: density functional theory and simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 3789

(http://iopscience.iop.org/0953-8984/11/19/301)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 11:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 3789–3798. Printed in the UK PII: S0953-8984(99)99717-5

A test-particle method for the calculation of the three-particle
distribution function of the hard-sphere fluid: density
functional theory and simulation

A Gonźalez, F L Roḿan and J A White
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Abstract. The three-particle distribution functiong(3) of the homogeneous hard-sphere fluid
is studied by means of the test-particle method of Percus. We consider an inhomogeneous
situation in which the position of two particles is fixed and the inhomogeneous density profile
that arises is related tog(3). The profile is calculated via Monte Carlo (MC) simulation and density
functional theory (DFT). The results of the simulation are compared with standard MC results for
the homogeneous fluid in order to check the numerics. The results of DFT are compared with
MC data, showing a significant improvement over the well-known superposition approximation of
Kirkwood.

One of the main aspects of the equilibrium statistical mechanics of liquids and dense fluids is the
study of the microscopic structure, since it provides valuable information on the thermodynamic
properties of the system. It is well known that the equilibrium structure of a fluid can be
described by means of the so-calledn-particle densitiesρ(n)(r1, . . . , rn) whereri denotes the
coordinates of the particlei (see, e.g., reference [1] for a definition ofρ(n)). Closely related to
then-particle densities are then-particle distribution functions [1]:

g(n)(r1, . . . , rn) = ρ(n)(r1, . . . , rn)
/ n∏

i=1

ρ(1)(ri ). (1)

For a homogeneous system,ρ(1)(r) = ρB whereρB is the bulk density of the fluid, and thus
ρB

ng(n)(r1, . . . , rn) = ρ(n)(r1, . . . , rn). In addition, if the system is isotropic, its two-particle
distribution functiong(2)(r1, r2) only depends onr = |r1 − r2|; in this caseg(2) is written
asg(r) and called the radial distribution function (RDF) [1]. For hard spheres or Lennard-
Jones fluids, excellent approximations forg(r) are available in the literature [1]. However,
much less is known about the three-particle distribution function. Similarly, the knowledge of
the one-particle structure of inhomogeneous fluids has experienced an important advance in
recent years [2], but only a few studies of its two-particle structure are available in the literature
(see below). One of the reasons for the lack of information on these higher-order distribution
functions is the fact that the three-particle functions of the homogeneous fluid and the two-
particle functions in the inhomogeneous case are functions of two or more variables, while
the homogeneous two-particle functions only depend on the radial coordinate, and most of the
inhomogeneous problems solved so far are those where the one-particle density is a function of
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one spatial variable. This increase in the number of variables usually implies a more complex
theoretical approach and a numerical problem that is significantly more demanding [3,4].

The earliest approximation for the three-particle distribution function of a homogeneous
system was the superposition approximation of Kirkwood [5]. Subsequent improvements of
this approximation [6–8] were based on somead hoccorrection functions determined from a
general relation betweeng(3) and the isothermal pressure derivative ofg(2) (see, e.g., [7, 8]).
Other recent approaches [9, 10] made use of the integral equations formalism [11] and the
inhomogeneous Ornstein–Zernike equation. This formalism was also used for the study of the
two-particle structure of inhomogeneous fluids [12], for which density functional theories
(DFT) have been also applied [3]. On the other hand, if one is interested in the triplet
direct correlation function, it can be investigated via approximate factorization [8,13] or even
DFT [14].

r2

r3
r1

z

Figure 1. A schematic diagram of the problem. The dashed line shows the cylindrical axis of
symmetry.

In this paper we shall focus on the calculation of the three-particle distribution function
by means of the test-particle method. This procedure is based on an early idea of Percus for
calculating the radial distribution function [15]: sinceg(r) gives the probability of finding a
particle of a fluid at a distancer from another particle, the inhomogeneous profileρ(1)(r) of a
fluid in contact with a particle fixed at the origin of coordinates is simply given by

ρ(1)(r) ≡ ρ(1)(r) = ρBg(r). (2)

If twoparticles are fixed at a distancer1, a similar probabilistic argument leads us to

ρ(1)(r) ≡ ρ(1)(r2, r3) = ρB

g(r1)
g(3)(r1, r2, r3) (3)

and therefore

g(3)(r1, r2, r3) = g(r1)

ρB
ρ(1)(r2, r3). (4)

A schematic representation of the problem is shown in figure 1. We note that this situation
implies an external potential that depends on the positions of the two test particles and thus
ρ(1) depends on the distancesr2 andr3. Equation (4) is the key equation in our work, since it
reduces the calculation ofg(3) to the evaluation of the inhomogeneous profileρ(1). Of course,
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and as a first approximation, one can consider a superposition approximation (SA) scheme for
ρ(1), i.e.,

ρ(1)(r2, r3) ≈ ρBg(r2)g(r3) (5)

which when substituted into equation (4) leads to the usual Kirkwood superposition approx-
imation (KSA) [5] forg(3):

g(3)(r1, r2, r3) ≈ g(r1)g(r2)g(r3). (6)

In order to improve this KSA result, in this work we shall employ density functional theory to
obtain the inhomogeneous profileρ(1)(r1, r2).

In studying inhomogeneous fluids, density functional theories have become one of the most
popular tools [16–18]. The accuracy of their predictions for a wide range of inhomogeneous
problems is perhaps the main reason for their success. Of course, DFT also provides a
theoretical framework for the study of homogeneous fluids. In this context it is important
to mention here that the DFT framework allows ready calculation of the direct correlation
functions (DCFs)c(n) via functional differentiation of the excess (over the ideal) free-energy
functional w.r.t. the densityρ(1)(r) [17]. Thus, forn = 2 one can calculate the two-particle
distribution function fromc(2) and the Ornstein–Zernike relation (see, e.g., [17]). Using this
procedure, G̈otzelmannet al [3] have recently obtained the two-particle distribution function
for several problems of inhomogeneous hard-sphere fluids. Forn = 3 one can also find
a relation betweenc(3) and g(3) [8] but the calculation becomes very complicated. Thus,
instead of following this approach, in this paper we shall consider the test-particle method of
equation (4) where the profileρ(1)(r1, r2) is obtained from DFT.

In DFT the profile is calculated by minimization of the grand potential of the fluid

�[ρ] = F [ρ] +
∫

dr ρ(1)(r)[Vext(r)− µ] (7)

whereF [ρ] is the Helmholtz intrinsic free energy of the fluid andVext(r) is the external
potential that gives rise to the inhomogeneity. In this case, the external potential is due to the
interparticle potential of the two fixed particles. A DFT prescription provides an approximate
form of the free energyF [ρ]; in this work we have chosen the fundamental-measures theory
of Rosenfeld [14] which appears to be one of the most successful theories for the study of
hard-sphere fluids in very inhomogeneous situations [19].

In order to solve the equations arising in the minimization of�[ρ], we take advantage
of the cylindrical symmetry of the system. This symmetry transforms a three-dimensional
problem into a two-dimensional one, with coordinatesz and% for the symmetry and radial
axis, respectively (see figure 1). For the numerical solution a two-dimensional grid is therefore
employed. The calculations are done by means of Fourier transforms, more precisely fast
Fourier transforms along thez-axis (this implies that we are assuming periodic boundary
conditions along the symmetry axis) and Fourier–Bessel transforms (solved with the procedure
described in [20]) along the%-axis.

Either using the present test-particle DFT method or in the KSA scheme, the knowledge
of the RDFg(r) is needed. For the sake of consistency we have chosen to work with theg(r)

obtained by solving the original test-particle problem (equation (2)) with the same Rosenfeld
DFT. Moreover, the ability of this DFT to describeg(r) via the test-particle procedure can help
us to explain its behaviour when employed to obtaing(3). In figure 2 we show a comparison
betweeng(r) obtained in a MC simulation (see below for details of the simulation) and
the one obtained by solving the test-particle problem. Despite the high packing fraction
ηB = (1/6)πσ 3ρB = 0.4 (the freezing occurs at a packing fractionηB ≈ 0.47), the DFT and
simulation results are very close. The main differences arise near the first minimum, i.e., in
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Figure 2. The RDFg(r) of hard spheres calculated in the test-particle problem with DFT and MC
simulation. The inset shows the difference between the two quantities.ηB = 0.4.

the zone aroundr ≈ 1.8σ , and at contact (r = σ +). These differences are very small and
increase with density, as can be appreciated in table 1 where we present the values at contact
g(σ +) obtained from DFT and simulation [21].

Table 1. Contact valuesg(σ+) obtained from DFT and simulation [21].

η gDFT(σ
+) gSIM(σ

+)

0.104758 1.312 1.312
0.209516 1.810 1.812
0.314075 2.644 2.635
0.340416 2.939 2.911
0.366557 3.280 3.239
0.392699 3.680 3.587
0.418841 4.153 4.031
0.444983 4.717 4.566
0.471315 5.403 5.185

The symmetry properties ofg(3) can be exploited to obtain a consistency test of our
procedure. More precisely, since

g(3)(r1, r2, r3) = g(3)(r2, r3, r1) = g(3)(r3, r1, r2) (8)

from equation (4) we obtain

g(r1)ρ
(1)(r2, r3) = g(r2)ρ(1)(r3, r1) = g(r3)ρ(1)(r1, r2) (9)
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Figure 3. Comparison among the three-particle distribution functionsg(3)(1.5σ, 2.0σ, 2.5σ)versus
ηB obtained from the different choices of equation (9) (see the text), for two different grid sizes.
The KSA result, usingg(r) from the test-particle DFT, is also shown.

where each profile is calculated for a given distance between the two fixed spheres. If the
equalities in equation (9) are not fulfilled, this will be due to (a) the fact that we are not using
the exactg(r) but an approximate form and (b) the errors in the calculation of the profile
ρ. These errors have, on the other hand, two origins: the approximate character of the DFT
prescription and the approximations made in the numerical solution of the problem, the latter
mainly due to the spacing of the mesh. We have observed that the choice of mesh is the most
important source of errors, at least in the range of mesh spacings employed. In particular
we have checked equation (9) for the case wherer1 = 1.5σ , r2 = 2.0σ andr3 = 2.5σ . In
figure 3 a plot ofg(3)(1.5σ, 2.0σ, 2.5σ) for a wide range of densities and for two different
meshes is shown. The three different lines for each mesh come from the three possibilities
of equation (9). It is evident that the agreement between these three lines for the large grid
(250× 512 points) is much better than that for the small one (125× 256 points). In the two
cases we use ‘boxes’ of the same dimensions and large enough to ensure that the errors due
to the finite size are not important. This dependence on the mesh spacing is not surprising
since we are dealing with relatively small meshes, and trying to use them to ‘simulate’ circular
curves (the test particles). Nevertheless, we consider the accuracy obtained with the large
mesh reasonable, and in what follows we shall use it. In figure 3 we have also plotted the result
obtained in the KSA (equation (6)), and found that in this case the results of DFT (large mesh)
and from the KSA are comparable.

In order to compare with the DFT calculations, we have obtained the three-particle
distribution function of the hard-sphere fluid from Monte Carlo simulation, but using two
different methods. One method consists of performing a standard MC simulation of the
homogeneous fluid where the value ofg(3) is measured in a direct way by following the usual
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Figure 4. Comparison between the isosceles three-particle distribution functionsg(3)(2σ, r, r)
obtained from direct MC simulation and the test-particle method (equation (4)), where the
inhomogeneous profileρ(2σ, r, r) has been obtained with a MC simulation (see the text). Bulk
packing fractionηB = 0.4. The inset shows a zoom on the vertical axis.
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Figure 5. The three-particle distribution functiong(3)(r, r, r) in the equilateral-triangle case. Bulk
packing fractionηB = 0.463. Notice the logarithmic scale on the vertical axis.
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procedure (see, e.g., reference [4]). The other method is based on the test-particle argument
of equation (4) and thusg(3) is calculated from the inhomogeneous profile obtained in a MC
simulation of a fluid where two particles have fixed positions. The results from both methods
are plotted in figure 4 where we observe that the only differences that arise are due to statistical
errors in the simulations. This should be regarded as a test of the MC simulations. Both
simulations were performed for a cubic ‘box’ of dimensions 12σ × 12σ × 12σ (σ being the
hard-sphere diameter) and periodic boundary conditions, withN = 1320 spheres and 109 MC
attempts per particle. This number of particles is large enough as to ensure that there are no
effects due to the finite number of particles or boundary conditions. This is the scheme that
we have followed in all of our MC simulations, and only the number of particles is changed to
obtain data for different densities. It is worthwhile to mention that the long-range behaviour
of g(3) is very sensitive to the structure of the fluid. Starting from a body-centred cubic grid
of hard spheres, a very long thermalization run is needed (≈107 MC attempts per particle) in
order to obtain a sensible result for the tail ofg(3) (using the first method), while good results
for g(r) can be obtained with a much shorter thermalization (≈104 MC attempts).

As a case to study, in figure 5 we have focused on the case of equilateral symmetry
(r1 = r2 = r3) at a packing fractionηB = 0.463. This case has already been studied by
Alder [22] by means of molecular dynamics (MD) simulations, and as an additional test
of our MC simulations we compare with their results, obtaining very good agreement. If
we compare these simulation results with those obtained from our DFT procedure, we can
see that the differences are very small and show the same trends in the region of the first
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Figure 6. The isosceles three-particle distribution functiong(3)(2σ, r, r). The absence of some
results in the contact (small-r) region is due to the geometrical shape of the grid. Bulk packing
fractionηB = 0.4. The inset shows a zoom on the vertical axis.
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minimum as previously observed in theg(r) case (figure 2). One can infer that this behaviour
is characteristic of Rosenfeld’s DFT. On the other hand, the deviations of the DFT result near
the contact, where a very inhomogeneous situation is reached—notice the very high value of
g(3)—can be ascribed to the approximate character of the theory but also to numerical problems
related to the spacing of the grid. In figure 5 we also present KSA results (from MC simulation
and DFT) and we observe that the KSA is unable to describe some of the features ofg(3),
especially in the region ofr ≈ 1.8σ . This behaviour is more evident when theg(r) employed
is obtained from the test-particle method, since thisg(r) is already an approximation.

Another possibility is to study the three-particle distribution function for isosceles (fixed
r1, andr2 = r3) configurations. If we consider the case wherer1 = 2.0σ for ηB = 0.4, we
find the situation depicted in figure 6. The main differences arise in the contact region, where
DFT is clearly superior to the KSA (withg(r) obtained from simulation). This contact reflects
the situation where the three hard spheres are aligned and in contact with each other. In this
case, it is reasonable for the superposition approximation to have some problems. On the other
hand, if we look at the problem as an inhomogeneous fluid, this situation presents a very strong
inhomogeneity, and the good behaviour of Rosenfeld’s DFT is remarkable. Out of this region,
the two results are very similar to simulation data. This is not very surprising if we look in
figure 5 at the region nearr ≈ 2.0σ , where DFT and the KSA yield almost the same value.
However, if we focus on the region nearr ≈ 1.8σ , where differences are bigger, we obtain the
results depicted in figure 7. In this case, the behaviour of DFT is still very good and clearly
superior to the KSA result, which presents important deviations from simulation at the first
minimum.

Finally, the results forg(3)(2.0σ, r, r) obtained with the present approximation are
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Figure 7. As figure 6, but forg(3)(1.84σ, r, r).
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compared with those obtained by Attard via the integral equations formalism [9]. We can
see both results in figure 8, where simulation and KSA results are also shown. As one can
observe, although Attard’s theory seems to perform slightly better, the two theories yield
comparable results. This fact is remarkable, since Attard’s approximation employs a closure
at the triplet level in the hierarchy of distribution functions [9].

To conclude, we shall summarize our results. We have presented in this work a different
procedure for calculating the three-particle distribution functions of a hard-sphere fluid, using
the test-particle and DFT methods. We have checked the dependency of the results on
the numerics, and found that good results can be achieved with an adequate choice of the
numerical parameters. When compared with simulations, the method is more accurate than
the superposition approximation, and the small deviations that appear can be explained in terms
of the approximate character of DFT.
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